21,186 research outputs found

    Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition.

    Get PDF
    The protein kinase Aurora-A is a major regulator of the cell cycle that orchestrates mitotic entry and is required for the assembly of a functional mitotic spindle. Overexpression of Aurora-A has been strongly linked with oncogenesis and this has led to considerable efforts at therapeutic targeting of the kinase activity of this protein. However, the exact mechanism by which Aurora-A promotes oncogenesis remains unclear. Here, we show that Aurora-A modulates the repair of DNA double-strand breaks (DSBs). Aurora-A expression inhibits RAD51 recruitment to DNA DSBs, decreases DSB repair by homologous recombination and sensitizes cancer cells to PARP inhibition. This impairment of RAD51 function requires inhibition of CHK1 by Polo-like kinase 1 (PLK1). These results identify a novel function of Aurora-A in modulating the response to DNA DSB that likely contributes to carcinogenesis and suggest a novel therapeutic approach to the treatment of cancers overexpressing this protein

    Functional divergence of microtubule-associated TPX2 family members in Arabidopsis thaliana

    Get PDF
    TPX2 (Targeting Protein for Xklp2) is an evolutionary conserved microtubule-associated protein important for microtubule nucleation and mitotic spindle assembly. The protein was described as an activator of the mitotic kinase Aurora A in humans and the Arabidopsis AURORA1 (AUR1) kinase. In contrast to animal genomes that encode only one TPX2 gene, higher plant genomes encode a family with several TPX2-LIKE gene members (TPXL). TPXL genes of Arabidopsis can be divided into two groups. Group A proteins (TPXL2, 3, 4, and 8) contain Aurora binding and TPX2_importin domains, while group B proteins (TPXL1, 5, 6, and 7) harbor an Xklp2 domain. Canonical TPX2 contains all the above-mentioned domains. We confirmed using in vitro kinase assays that the group A proteins contain a functional Aurora kinase binding domain. Transient expression of Arabidopsis TPX2-like proteins in Nicotiana benthamiana revealed preferential localization to microtubules and nuclei. Co-expression of AUR1 together with TPX2-like proteins changed the localization of AUR1, indicating that these proteins serve as targeting factors for Aurora kinases. Taken together, we visualize the various localizations of the TPX2-LIKE family in Arabidopsis as a proxy to their functional divergence and provide evidence of their role in the targeted regulation of AUR1 kinase activity

    Endogenous Localization and Expression Patterns of Aurora Kinases B and C in Mouse Oocytes and Early Embryos

    Get PDF
    The Aurora Kinase proteins are a family of serine/threonine kinases that have been shown to play fundamental roles in controlling M phase progression in somatic cells. Aurora Kinase A protein is known to be vital for proper spindle assembly and therefore, chromosome segregation. Previous reports have shown that Aurora Kinase B is vital for proper completion of karyokinesis and cytokinesis in somatic cells. The role of Aurora Kinase C in somatic cells has been found to be less clear; however it appears to play an important role in spermatogenesis. Little is known about the role of these Aurora Kinase proteins mouse oocytes during oogenesis, and even less is known about them in embryos during early development. The objective of these studies was to characterize the presence, localization, and function of Aurora Kinase B and Aurora Kinase C protein and mRNA in mouse oocytes and early embryos. Oocytes and embryos were collected from hormone stimulated CF-1 mice and cultured for varying amounts of time. Cumulus denuded oocytes were either fixed for immunofluorescence microscopy studies, lysed for analysis of mRNA levels through the use of reverse transcription PCR (rtPCR) and quantitative rtPCR (q-rtPCR), lysed for protein analysis employing Western blotting, treated with Aurora Kinase protein inhibitor drugs, or microinjected with a siRNA pool targeting Aurora Kinase B. Samples were processed for immunofluorescence analysis using markers of spindle morphology (tubulins), Aurora Kinase B, Aurora Kinase C, and Aurora Kinase B activity (phospho Histone H3). Analysis of relative levels of Aurora Kinase B and Aurora Kinase C mRNA were assessed by rtPCR and q-rtPCR methods. Western blotting was performed on oocytes and early embryos to quantitate Aurora Kinase B and C protein levels. Aurora Kinase inhibitors, Hesperadin and ZM447439, were added to culture medium with mouse oocytes to determine the effects of the loss of Aurora Kinase activity. siRNAs were used to inhibit Aurora Kinase B mRNA in early embryos to ascertain the effect of functional loss of this transcript on embryo development. Marked differences were observed in the localization of Aurora Kinase B when unfertilized oocytes or pre-zygotic genome activation (ZGA) embryos were compared to post-ZGA samples. There was no evidence of Aurora Kinase B protein localized to the mitotic spindle or resultant midbody in oocytes and blastomeres of early embryos. Western blotting results supported this data. Embryos fixed post-ZGA demonstrated Aurora Kinase B localization at midbodies between dividing cells, as was found in mouse embryonic fibroblast control cells. Aurora Kinase C protein was not demonstrable in mouse oocytes, embryos, or control cells using immunocytochemistry or Western techniques. In contrast, Aurora Kinase B and Aurora Kinase C mRNAs were both found to be present in mouse oocytes and early embryos. q-rtPCR data further supported this finding for Aurora Kinase B and revealed that the mRNA level of this transcript is relatively constant until ZGA at which point a decrease relative to the earlier stages was observed. Transcript levels recovered post-ZGA and were comparable to the pre-ZGA levels. Functional inhibition of the Aurora Kinase family through the use of Hesperadin or ZM447439 demonstrated the importance of these proteins for proper microtubule and spindle organization, as these drugs disrupted both karyokinesis and cytokinesis in mouse oocytes and blastomeres of early embryos. Aurora Kinase B targeting siRNA also established a role for Aurora Kinase mRNA in embryos at the 2-cell stage based on the disruption of the cell cycle that was observed in treated embryos. Given earlier reports showing the vital role of the Aurora Kinase proteins in proliferating somatic cells, knowledge of the expression and localization of these proteins in oocytes and early embryos is vital for the understanding of cell cycle control during oogenesis and early embryogenesis. Our data indicate that Aurora Kinase B mRNA may also play a role in early embryogenesis, demonstrating a need for analysis of transcript as well as protein. Our results, as well as outcomes of future experiments suggested by our work, may provide significant insight into cell cycle regulation differences between somatic and embryonic cells. These differences may have a profound impact upon manipulated embryos including those reconstructed through somatic cell nuclear transfer

    HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis

    Get PDF
    Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores

    Get PDF
    The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset

    The role of Aurora-A inhibitors in cancer therapy.

    Get PDF
    Recently, new chemotherapy agents which target the non-structural components of mitosis have been developed. An important protein involved in several mitotic phases is the Aurora-A protein. By means of the phosphorylation of different substrates, Aurora-A regulates the correct development of the various phases of mitosis. The kinase activity of this protein makes Aurora-A an excellent candidate as an oncogene. The first data of Aurora-A involvement in cancer regarded the identification of Aurora-A overexpression in primary breast and colon tumour samples. With regard to the predictive role of Aurora-A, it has been shown that its overexpression disrupts the spindle checkpoint activated by paclitaxel (Taxol) or nocodazole treatment, thus inducing the cells to become resistant to these drugs. The development therefore of small molecules with an Aurora-A inhibition function may make it possible to reduce or block the oncogenic activity of Aurora-A and in addition may improve the survival of oncological patients showing resistance to paclitaxel or nocodazole treatment. Three novel Aurora kinase inhibitors have recently been described--Hesperadin, ZM447439 and VX-680. All these three drugs have been designed to target the ATP-binding site of Aurora kinase, so they inhibit all three Aurora kinase family members showing a similar phenotype when tested in cell-based assays. Among these three different molecules, VX-680 has shown promising results in in vitro and in vivo studies. In conclusion, it is clear that we are entering a new era in anti-mitotic therapy with the identification and now clinical translation of new targets in mitosis beyond tubulin but many questions remain with regard to Aurora function

    The Chromosomal Passenger Complex Activates Polo Kinase at Centromeres

    Get PDF
    The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation
    corecore